Role of dynorphin and GABA in the inhibitory regulation of NMDA-induced dopamine release in striosome- and matrix-enriched areas of the rat striatum.
نویسندگان
چکیده
Using a new superfusion procedure in vitro, we have previously reported that the NMDA-evoked release of newly synthesized 3H-dopamine (DA) was higher in matrix- than in striosome-enriched areas of the rat striatum. In addition, GABAergic medium-sized spiny neurons were shown to be indirectly involved in this regulation. Since dynorphin and GABA are colocalized in a population of medium-sized spiny neurons, the role of dynorphin-containing neurons in the NMDA-evoked release of 3H-DA has been investigated using the same superfusion procedure on rat striatal slices. (1) The NMDA (50 microM, 25 min application)-evoked release of 3H-DA was increased in the presence of naloxone (1 microM, continuously delivered) in both striatal compartments, the overall response being more elevated in the striosome-enriched area. (2) The TTX (1 microM, continuously delivered)-resistant NMDA-evoked responses were also enhanced in the presence of naloxone, but in this case, the disinhibitory effects of naloxone were similar in striosome- and matrix-enriched areas. (3) The selective kappa-agonist U-50488 (1 microM) totally reversed the naloxone-disinhibitory effect on the NMDA-evoked response in the matrix-enriched area, but only partially in the striosome-enriched area. It also completely prevented the disinhibitory effect of naloxone on the TTX-resistant NMDA-evoked release of 3H-DA in both compartments. (4) The bicuculline (5 microM)- and naloxone (1 microM)-disinhibitory effects on the NMDA-evoked release of 3H-DA were additive in the matrix- but not in the striosome-enriched areas.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome- and matrix-enriched areas of the rat striatum.
Striosome- and matrix-enriched striatal zones were defined in coronal and sagittal brain sections of the rat, on the basis of 3H-naloxone binding to mu-opiate receptors (a striosome-specific marker). Then, using a new in vitro microsuperfusion device, the NMDA (50 microM)-evoked release of newly synthesized 3H-dopamine (3H-DA) was examined in these four striatal areas under Mg(2+)-free conditio...
متن کاملFacilitation by endogenous tachykinins of the NMDA-evoked release of acetylcholine after acute and chronic suppression of dopaminergic transmission in the matrix of the rat striatum.
Using a microsuperfusion method in vitro, the effects of the NK1, NK2, and NK3 tachykinin receptor antagonists SR140333, SR48968, and SR142801, respectively, on the NMDA-evoked release of [3H]-acetylcholine were investigated after both acute and chronic suppression of dopamine transmission in striosomes and matrix of the rat striatum. NMDA (1 mm) alone or with D-serine (10 microm) in the presen...
متن کاملDopamine- induced hypophagia is mediated via NMDA and mGlu1 receptors in chicken
Background: Feeding behavior is regulated by a complex network which interacts via diverse signals from central and peripheral tissues. It is known dopaminergic and glutamatergic systems have crucial role on food intake regulation but scarce reports exist on their interaction in appetite regulation in broilers. OBJECTIVES: The present study was designed to examine the role of glutamatergic syst...
متن کاملA Role for Adenosine A1 Receptors in GABA and NMDA-Receptor Mediated Modulation of Dopamine Release: Studies Using Fast Cyclic Voltammetry
In the striatum many neurotransmitters including GABA, glutamate, acetylcholine, dopamine, nitric oxide and adenosine interact to regulate synaptic transmission. Dopamine release in the striatum is regulated by a number of pre- and postsynaptic receptors including adenosine. We have recently shown using isolated rat striatal slices, and the technique of fast cyclic voltammetry, that adenosine A...
متن کاملMorphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 4 شماره
صفحات -
تاریخ انتشار 1994